

Problem 1. Pure Nash equilibria

Two tobacco companies must decide whether to buy ads for the next Formula 1 race.

- Displaying ads gives you a marketing advantage over the other producer.
- Total sales are marginally affected by advertising (the number of people smoking is the same, they only move from one brand to another).
- The total value of sales is 4. Advertising costs 0.5 (see matrix above).

$$\begin{array}{cc}
 & \text{No Ad} & \text{Ad} \\
 \text{No Ad} & \begin{array}{c} (2, 2) \\ (2.5, 1) \end{array} & \begin{array}{c} (1, 2.5) \\ (1.5, 1.5) \end{array} \\
 \text{Ad} & \begin{array}{c} (2.5, 1) \\ (1.5, 1.5) \end{array} & \begin{array}{c} (1, 2.5) \\ (1.5, 1.5) \end{array}
 \end{array}$$

- What is the Nash equilibrium of this game?
- Formula 1 organizers now forbid tobacco advertising in their races. Are tobacco companies going to complain?

Solution:

- The game's Nash Equilibrium is (Ad, Ad) . If we suppose company 1 buys ads, then company 2 receives more revenue by buying ads than by not buying ads. Similarly, if we suppose company 2 buys ads, then company 1 receives more revenue by buying ads than by not buying ads. Hence, (Ad, Ad) is a Nash Equilibrium.
- If the organizers forbid tobacco advertising, then both companies must play $(\text{No Ad}, \text{No Ad})$. Since $(2, 2) \succ (1.5, 1.5)$, the payoff from $(\text{No Ad}, \text{No Ad})$ is greater for both companies than the payoff from the Nash Equilibrium (Ad, Ad) , and so neither will complain.

Additional problems: Solve Exercises 1 and 2 in the slides 01-Static games.pdf.

Solution of Exercise 1 (Iterated elimination of dominated actions)

- No action is dominated or weakly dominated for player 1. For player 2, action y is strictly dominated by z and w . Moreover, w is weakly dominated by z . Hence, we can remove actions y and w .
- The reduced payoff matrix is given by:

$$\begin{array}{cc}
 & x & z \\
 a & \begin{array}{c} (-1, 1) \\ (1, -1) \end{array} & \begin{array}{c} (3, -3) \\ (2, -2) \end{array} \\
 b & \begin{array}{c} (1, -1) \\ (4, -4) \end{array} & \begin{array}{c} (2, -2) \\ (3, -3) \end{array} \\
 c & \begin{array}{c} (4, -4) \end{array} & \begin{array}{c} (3, -3) \end{array}
 \end{array}$$

In the reduced payoff matrix, action c of player 1 is dominated by b (and weakly dominated by a). Thus, we can remove action c and we then find that action x of player 2 is dominated by z . Lastly, we have that action a is dominated by action b . This leaves action profile (b, z) which is a Nash equilibrium. Notice that by removing weakly dominated actions we removed the following Nash equilibrium: (b, w) .

- In the case where $A = B$, action z and w are dominated by y . We can not remove any other action. So, action dominance cannot lead to a unique outcome of the game. However, From the reduced game, it is easier to find the Nash equilibria: (a, x) and (c, y) .

We observe that action dominance cannot always lead to a unique outcome of the game. However, it can help remove some actions and form a reduced game, which would be in turn simpler to analyze.

Solution of Exercise 2 (The Stag Hunt)

a) The payoff matrix is given by:

$$\begin{array}{cc} & \text{Stag} & \text{Hare} \\ \text{Stag} & \left[\begin{array}{cc} \left(\frac{D}{2}, \frac{D}{2} \right) & \left(0, R \right) \\ \left(R, 0 \right) & \left(\frac{R}{2}, \frac{R}{2} \right) \end{array} \right] \\ \text{Hare} & \end{array}.$$

b) There is no dominated action. In fact $\frac{D}{2} > R$, but $0 < \frac{R}{2}$.

c) The security level is given by

$$\max_{a \in \{\text{Stag, Hare}\}} \min_{b \in \{\text{Stag, Hare}\}} J_{a,b} = \max \left(\min \left(\frac{D}{2}, 0 \right), \min \left(R, \frac{R}{2} \right) \right) = \max \left(0, \frac{R}{2} \right)$$

The security strategy to obtain the security level is *Hare*.

d) There are two Nash equilibria: (*Stag, Stag*) and (*Hare, Hare*).